Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Ke Lu,^a* Peng-Mian Huang^a and Jiang-Fan Yu^b

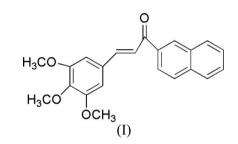
^aSchool of Pharmaceuticals & Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bCollege of Resources and the Environment, Central South Forestry University, Changsha, 410004, People's Republic of China

Correspondence e-mail: lukz1886@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 113 K Mean σ (C–C) = 0.003 Å R factor = 0.066 wR factor = 0.146 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


(*E*)-1-(2-Naphthyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

In the title compound, $C_{22}H_{20}O_4$, the naphthalene ring system makes a dihedral angle of 36.3 (5)° with the benzene ring. Neighboring molecules are linked *via* weak $C-H\cdots O$ hydrogen bonding.

Received 30 October 2006 Accepted 12 November 2006

Comment

(E)-1-(Naphthalen-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2en-1-one, (I), is a valuable pharmaceutical intermediate (Jardine *et al.*, 1980; Issell *et al.*, 1984; Stahelin & Wartburg, 1989). We report here the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the naphthalene ring system and the benzene ring is $36.3 (5)^{\circ}$. Of the three methoxy groups, two are coplanar with the benzene ring, but the O3–C21 bond makes an angle of $55.75 (13)^{\circ}$ with the C14-benzene ring plane, minimizing repulsion between the methoxy groups. Neighboring molecules are linked together *via* weak C–H···O hydrogen bonding (Table 1).

Experimental

A mixture of 3,4,5-trimethoxybenzaldehyde (5 mmol) and 2-(prop-1en-2-yl)naphthalenecarbaldehyde (10 mmol) was dissolved in a water-ethanol solution (100 ml, v/v = 6:4). A solution of KOH (4.0 ml, 7.1 mmol) was added slowly with stirring at 323 K over 5 h. The resulting mixture was neutralized with 2 N HCl solution and extracted with CH₂Cl₂. The organic layer was washed with brine, dried with Na₂SO₄ and evaporated under vacuum to give (I). Compound (I) (40 mg) was dissolved in a mixture of ethyl acetate (5 ml) and petroleum ether (50 ml), and the solution was allowed to stand at room temperature for 16 d, yielding single crystals of (I).

Crystal data

 $\begin{array}{l} C_{22}H_{20}O_4 \\ M_r = 348.38 \\ Orthorhombic, Pbca \\ a = 13.5903 \; (13) \mbox{ Å} \\ b = 8.6378 \; (9) \mbox{ Å} \\ c = 30.169 \; (3) \mbox{ Å} \\ V = 3541.5 \; (6) \mbox{ Å}^3 \end{array}$

Z = 8 D_x = 1.307 Mg m⁻³ Mo K α radiation μ = 0.09 mm⁻¹ T = 113 (2) K Platelet, colorless 0.34 × 0.22 × 0.06 mm

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

Data collection

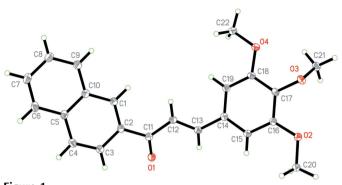
Rigaku Saturn-70 diffractometer ω scans Absorption correction: none 26883 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.146$ S = 1.233477 reflections 240 parameters H-atom parameters constrained 3477 independent reflections 3229 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.073$ $\theta_{\text{max}} = 26.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 \\ &+ 1.8606P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.22 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.21 \ e \ \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97} \\ &\text{Extinction coefficient: 0.0066 (9)} \end{split}$$

 Table 1


 Hydrogen-bond geometry (Å, °).

$C12-H12\cdots O1^{i}$ 0.95 2.56 3.508 (3)	176
$C22 - H22B \cdots O1^{i}$ 0.98 2.51 3.405 (3)	153

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Methyl H atoms were placed in calculated positions, with C–H = 0.98 Å, and torsion angles were refined to fit the electron density, $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$. Aromatic H were placed in calculated positions, with C–H = 0.93 Å, and refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1 The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

SHELXTL (Bruker, 1997); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

The authors thank the Science Foundation of Tianjin University for financial support.

References

Bruker (1997). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Issell, B. F., Muggia, F. M. & Carter, S. K. (1984). Editors. *Etoposide (VP-16), Current Status and New Developments*, pp. 33–47. Orlando: Academic Press.

Jardine, I. (1980). Podophyllotoxins. In Anticancer Agents Based on Natural Products Models. Orlando: Academic Press.

Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stahelin, H. & Wartburg, A. V. (1989). Progr. Drug. Res. 33, 169-266.